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INTRODUCTION

Organic composites have become familiar structural components in many

applicaticns that require high stiffness and low weight. A current problem in

Army cannon design is to replace a portion of the steel wall thickness with an

organic composite. The steel liner maintains the tube-projectile interface and

shields Lhe composite from the extremely hot gases. The steel also has elastic

properties in the radial direction that are better than the composites for

transferring loads. The theoretica! and experimental results for an organic

composite-jacketed steel tube subjected to internal pressure in the elastic

range were described in a-recent report (ref 1). This report presents an

elastic-plastic analysis of the composite tube problem. The composite tube is

constructed of a steel liner and a graphite-bismaleimide outer shell.

Analytical expressions for stresses, strains, and displacements are derived for

loading within and beyond the elastic range up to failure.

ELASTIC RANGE

Figure 1 shows a schematic of the composite tube problem. The composite

tube consists of an inner steel "liner" and an outer composite "jacket." The

COMPOSITLiner

Figure 1. Schematic of a composite tube problem.
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steel liner of inside radius a and outer radius b is wrapped in the circumferen-

tial direction with a graphite-bismaleimide organic composite of outside radius

c. The elastic material constants for the composite and the steel are given in

Table I.

TABLE I. ELASTIC CONSTANTS OF COMPOSITE JACKET AND STEEL LINER

Elastic Constants for IM6/Bismaleimide, 55% F.V.R.

Er = 1.126 Mpsi Vr@ = 0.01524 VOr = 0.3155

Ee = 23.31 Mpsi vez = 0.3155 Uze = 0.01524

Ez = 1.126 Mpsi Vzr = 0.3991 Vrz = 0.3911

Elastic Constants for Steel

E = 30.0 Mpsi v = 0.3

When the composite tube is subjected to internal pressure p in the elastic

range, the gereral solutions in the plane-strairn condition for the isotropic

liner (a 4 r 4 b) are

= (p-q)() + p - q bz/aZ/( 1)

r a3 (2)

u/r = E-'(1+v)[(p-q)(b/r)2 + (1-2v)(p-q bz/a 2 )]/( - 1) (3)I

and for the orthotropic jacket (b 4 r 4c),

ar = q(- cS) k q + (C) l/[(c/b)2k -1] (4)

a6 = kq((c/b)k1(C) k+l k-

u/r = 6e - a12ar + a22ae (6)

where q is the pressure at the interface, k = (a11/22)(,
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all= (1-rzUzr)/Er

C12 = - (Ver+Uezvzr)/E9

a22 (1-'ezvze)/Ee (7)

By requiring the displacement to be continuous at the interface, the inter-

face pressure q can be expressed as a linear function of internal pressure p,

2e bq - 1)(Ak /b)3k+i + ] + 1 (8)
q a (c/b)2k - 1 a2

where

A = Ea2 2 /(1-V
2 ), B = -Ea12 /(1-'

2 ) - .(1-') (9)

Now all the stresses, strains, and displacements in the tube (a 4 r 4 c) can be

determined as functions of p. In particular, the expressions for the displace-

ments at the bore (Ua), interface (ub), and outside surface (uc) are

b - 1) E ua .(+) q2 + (1-v-20.)  b.

al p a i + bt 1)[AK j2ql-±-i_ + B] + -- + I
ae (c/b)2k - 1 a 2

(10)

Ub (c/b)2k - 1

b -= q[ka2 2 (c/b)2k - 1- 2]1)

uc  2qka2 2 (c/b)k-1-- = -- - - - - - -(12)
c (c/b)2k - 1

ELASTIC-PLASTIC RANGE

When the internal pressure p is large enough, part of the steel liner will

become plastic. Using Tresca's yield criterion, the associated flow rule, and

assuming linear strain-hardening, the elastic-plastic solution based on Bland

can be used (refs 2,3). Let p be the elastic-plastic interface.

The solution can be written in the elastic portion (p 4 r 4 b) as

ao r 2 r2  2 b 2  ao

3



arlao Pa p2 (14)

ae/a 0  r2  b2 ao  (15)

az o = p pz/b 2 - 2v q/ao (16)

and in the plastic portion (a 4 r 4 p)

Erar-- -= -- + (1-VZ )  K(17)

r1 p2  1 p1 (18)
l = (1-0 +0 -} + -2 (1-ui)2n e -

a(/o 0  r ao (19)

P

aZ/o = v p2/b2 - 2v(1-rn})n F - 2v q/ao  (20)

ZP = (pa/r2_1) , ---- ----- (21)

M + ~(1m .....

--E m, a (22)
r3 ao 1-m n E

where ao is the initial tensile yield stress and Et is the tangent modulus in

the plastic range of the stress-strain curve.

Using Eqs. (11) and (13) and the requirement of displacement continuity at

the interface, i.e., ub. (liner) = ub+ (jacket), we obtain the expression for

the interface pressure q as

------------ ----- --- - -- - -- - (23 )
o C/b) 2k + (

(1 +v ) ( 1 -2 u) + E [a 2 2 k ------ -a 1 2](c/b)2 k - I

Given any value of p in a 4 p ( b, we can now determine q, u, and all the

stresses and strains in the tube. In particular, the expressions tor internal

pressure and for displacements at the bore and the interface are

e. = 9- + 1 (I - e,) + (1-nA)In e + 1 n (L - 1) (24)
E 2 a 2 a

E -a (1-v-20) o + (1-02 )p2/a2  (25)
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E ub p

O ; - ) e - (1-v-20) (3-  (26)

By letting p = a and b, we can determine the lower limits p*, q*, Ua*, Ub*,

Uc*, and the upper limits p**, q**, ua**, ub**, uc**, respectively.

FULLY-PLASTIC RANGE

When the internal pressure p is further increased, i.e., p > p**, the steel

liner will become fully-plastic. The composite jacket remains elastic as long

as the failure pressure is not reached. A fully-plastic solution is derived

below.

Subject to a6 ) az ) ar, Tresca's criterion states that yielding occurs

when

ag - ar = (27)

where a is the yield stress. For a linear strain-hardening material,

a = ao(1+7c) (28)

where ao, r, CP, are the initial yield stress, hardening parameter, and equiva-

lent plastic strain, respectively. The associated flow rule states that, sub-

ject to aO > az '- r ,

deep = -derp ) 0 and dez p = 0 (29)

dezp is an increment of plastic strain and is defined by dcz P = dEz - dez

eSinct dcP dez dez , and therefore

z = Cz = (oz-var-Ue)/E (30)

In the plane-strain case (c. = 0) Pnd using the equation of equilibrium,

a@ = ar + rar' and ar' = dar/dr (31)

we have

az = 2va r + vrar' (32)

5



Since the dilatation is purely elastic

u' + u/r + cz = E-'(1-2v)(Or+09+Oz) (33)

Substituting fr..- Eqs. (31) and (32)

u' + u/r - E-1(1-2)(1+1)(2ar+rar') (34)

On integration,

ru = E-1(1-2v)(1+l)raar + 0 b2 (35)

where

(0 = Ub/b + 11-2v)(1+v)E- 1q (36)

Using Hooke's law and Eqs. (27), (28), (31), and (32), we obtain

E e = (1-2 )(l+)ar + (I-u2 )ao(1+"c) (37)

Substituting from Eq. (35) for co Ind from Eq. (37) for cee

= £- e = b2/rCep = e - co =b b2/r2 - E-'(1-0)ao(1+ p ) (38)

By Eq. (29) and the definition of equivalent plastic strain,

Sp =fdc p = / 2 f(dcP)2 + (der p),14 = 2 cop (39)
3 -

IV

Combining Eqs. (38) and (39) leads to

C-P [ - bz/r2 - (!-v 2 )aO/E]/[l + -2 (!-0)nOb/E] 40)

Substituting Eqs. (27) and (28) into Eq. (31) and integrating, we have

r
ar = -p + a0 In(r/a) + a0 T1 f JPr - dr (41)

a

Now using Eq. (40), an explicit expression for the radial stress is obtained

r 1 nB b2  b2

ar = -p + a (1-nA)In( ) + - 0 [z 42

Using Eqs. (11) and (36) and the requirement of displacement continuity at the

interface, i.e., ub . (liner) = ub+ (jacket), we get
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(c/b)2k + 1
= (Ea22k -- ------- - Ea1 2 + (1-2v)(l+v)]qlE (43)

(c/b)2k - 1

Evaluating ar at the interface from Eq. (42) and using Eq. (43), we obtain the

relation between p and q

b + 1 b (c/b)2k + I
p =o(I-Y0)In + q(1 + 1 nA( ' - 1)[Ak (- - + B + 1]} (44)

(c/b)2k - 1

It is interesting to point out that p is a linear function of q. Similarly,

when evaluating u at the bore from Eq. (35), we obtain

ua/a = -(1-2v)(1+v)P/E + 0 bz/a 2  (45)

which can also be expressed as a linear function of q with the aid of Eqs. (43)

ard (44). Since the relation between q and ub is linear from Eq. (11), p and

ua, given by Eqs. (44) and (45), respectively, can be expressed as linear func-

tions of ub.

NUMERICAL RESULTS

Given any value of internal pressure, we can obtain numerical results for

the stresses and strains in the radial and tangential directions and also for

the displacement at any radial position in a composite tube. However, only

those values at the bore, interface, and outside surface have been calculated.

The organic composite material is considered to be elastic until brittle failure

occurs at a maximum strain of 1.3 percent. The steel is assumed to be elastic-

plastic, linear strain-hardening with ao = 120 Ksi, Et = 0.04 E, and au

(ultimate stress) = 140 Ksi.

The relations between bore hoop strain and internal pressure are presented

in Figures 2 and 3. Figure 2 shows the relations for four tubes of wall ratio

1.321 and Figure 3 for three tubes of wall ratio 1.546. The percentage of com-

posite in each tube is defined by (c-b)/(c-a) x 100 percent. The relation

7



between hoop strain and internal pressure is nonlinear in the elastic-plastic

range and the two limits are indicated in the figures. The nonlinear range

becomes smaller as the percentage of composite increases. For a given strain in

the elastic range, the steel tube can resist larger pressure than the composite

tube. However, for a large strain in the fully-plastic range, the composite

tube can support larger pressure than the steel tube. This advantage in con-

taining higher pressure seems very attractive for using composite tubes. It is

also interesting to note that the nonlinear elastic-plastic range becomes larger

as the wall ratio increases as shown in these two figures.

The numerical results for the hoop strains at the bore, interface, and out-

side surface of three composite tubes are shown in Figures 4, 5, and 6 as func-

tions of internal pressure. The actual specimens were constructed (ref 1) using

steel liners with two thicknesses and the appropriate thickness of the composite

circumferentially wound on the liner. The geometric dimensions (a,b,c) for the

three composite tubes are (0.9, 1.0, 1.189), (0.9, 1.07, 1,189), and (0.9, 1.07,

1.391). Figures 4, 5, and 6 show the numerical results for these tubes, resp-c-

tively. The complete (including elastic, elastic-plastic, and fully-plastic)

ranges of loadings up to failure pressure have been considered. Brittle failure

of the composite material occurs at a maximur strain of 1.3 percent. The maxi-

mum values of internal pressure these three tubes can contain without failure

are 56.9, 53.1, and 78.0 Ksi, respectively. In these figures we also show the

limits of internal pressure in the elastic-plastic range, i.e., (p*, P**)

(20.48, 23.93), (23.06, 28.75), and (27.47, 34.98 Ksi), respectively.
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